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Computer simulation studies of anisotropic systems 

XIX. Mesophases formed by the Gay-Berne model mesogent 

by G. R. LUCKHURST and R. A. STEPHENS 
Department of Chemistry, The University, Southampton SO9 5NH, England 

and R. W. PHIPPEN 
IBM UK Scientific Centre, Athelstan House, St. Clement Street, 

Winchester SO23 9DR, England I 

(Received 9 March 1990; accepted 9 May 1990) 

We report the results of a molecular dynamics computer simulation of particles 
interacting via the Gay-Berne potential with parameters selected to approximate 
those of mesogenic molecules. The system was found to form a variety of meso- 
phases as the temperature was lowered. We have characterized these phases with 
the aid of computer graphics techniques to visualize the molecular organization 
within configurations taken from the production stage of the simulations. The 
phases have been identified, on the basis of such images, as isotropic, nematic, 
smectic A, smectic B and crystal. 

1. Introduction 
The major requirement for a compound to form a liquid crystal mesophase is that 

its constituent molecules deviate from spherical symmetry. Although molecules with 
a wide range of shapes have been found to exhibit liquid crystals the most common 
form is undoutedly rod-like [I]. In consequence the majority of computer simulations 
of liquid crystal behaviour have taken the particles to be cylindrically symmetric. 
The pioneering Monte Carlo simulations by Lebwohl and Lasher assumed a weak 
anisotropic potential [2 ] ,  analogous to that expected at long range. However it is 
appreciated that for real mesogens the anisotropic potential has important contri- 
butions from repulsive short range as well as the attractive long range interactions. 
In an attempt to provide computationally simple potentials for relatively complex 
molecules Berne and his colleagues have developed a series of potentials based on the 
gaussian overlap model [3]. Although the earlier versions of these were used in 
computer simulations of liquid crystal behaviour, apparently with some success, it' 
was realized, eventually, that the Berne-Pechukas-Kushick potential had several 
unrealistic features [4]. Thus for parallel molecules the well depth is independent of 
their orientation with respect to the intermolecular vector. In addition the width of 
the attractive well was found to vary with the molecular orientation with respect to 
the intermolecular vector. 

To rectify these deficiencies Gay and Berne have modified the original gaussian 
overlap potential in an essentially phenomenological manner [5].  Thus, they attempted 
to obtain a function which gave the best fit to the pair potential for a linear array of 

t Presented at the Twelfth International Liquid Crystal Conference, 15-19 August 1988, 
University of Freiburg, F.R. Germany. 
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452 G. R. Luckhurst et al. 

four equidistant Lennard-Jones centres with a separation of 20, between the first and 
fourth sites. The form adopted for the total potential is 

W Q l , Q 2 , r )  = 4&(QI,Q2,P) 

where Q,, Q, are unit vectors giving the orientation of the two particles, r is the 
intermolecular vector, the associated unit vector is P and r is the molecular separation. 
The parameters in the potential are orientation dependent; & ( G I ,  Q,, P) is the well 
depth and a(Q, , Q,, P) is the intermolecular separation at which the attractive and 
repulsive terms cancel. The functional dependence of this distance is, as in the 
Berne-Pechukas-Kushick potential, 

where cr0 is a constant which we shall identify shortly. The shape anisotropy parameter, 
x, is 

where (T, is the separation when the molecules are end-to-end and (T, that when they 
are side-by-side. In other words (T, and 0, are essentially the length and breadth of the 
particle; x vanishes for spherical particles and is one for infinitely long rods and minus 
one for infinitely thin disks. 

We shall write the depth of the well as 

&(a,, 02, P) = & o & ” ( Q , ,  Q,)&’yQ,, 02, P), (4) 

where 

as in the original Berne-Pechukas-Kushick potential [3]. The new term has an angular 
dependence reminiscent of that for a(@ Q,, P) namely 

} 9 ( 6 )  
(P - a, + P * Q,)2 (P * 0 ,  - P * 0,)2 

1 - x ’ ( Q ,  - a,) + I 1 + x ’ ( Q ,  - a,) &’(Q,,Q,,P) = 1 - (x’/2) 

where the parameter 1’ is related to the anisotropy in the well depth via 

x’ = { I  - (&e/&s)l/p}/{ 1 + ( E e / E s ) I / P } .  (7) 

The well depth & ( G I ,  Q,, P) and the intermolecular separation a(Q,, Q,, i )  clearly 
change with the orientations of the molecules and the intermolecular vector. To 
illustrate this dependence as well as the significance of the parameters ( T ~ ,  us, E, and 
E, we give in the table the values of ~ ( 9 , ~  Q,, P) and a(Q,, ti,, P) for orientations of 
particular significance and simplicity. These are the end-to-end (e), the side-by-side 
(s), the cross (X) and the tee (T) configurations. From the table we can see that in the 
cross configuration both the well depth and the intermolecular separation are 
independent of the parameters x, x’, v and characterizing the Gay-Berne potential; 
they are just E, and u,,, respectively. When the molecules are in the side-by-side 
configuration the intermolecular separation is also (T, and so it seems logical to 
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Mesophases of the Guy-Berne model mesogen 453 

The well depth &(ill ,  02, P) and intermolecular separation u(OI, iI2, P) for particular 
orientational configurations. 

identify this as a,. With this identification the separation in the end-to-end configuration 
is ae as we might have anticipated. The well depths for these two configurations do 
not have such a simple interpretation for they both depend on the shape anisotropy 
parameter x and are not simply E, and E, .  However the ratio of the well depths for the 
end-to-end and side-by-side configurations is just E , / E , .  In the tee configuration 
neither the well depth nor the intermolecular separation takes a particularly simple 
form. The exponents v and p in equation (4) are treated as adjustable parameters; to 
obtain the best fit to the linear array of four Lennard-Jones centres v was set equal 
to 1 and p was equal to 2. 

The ability of particles interacting via this particular form of the Gay-Berne 
potential to exhibit liquid-crystalline behaviour has been studied using the molecular 
dynamics computer simulation technique [6]. The length-to-breadth ratio, ae/as, was 
set equal to 3 which is typical of a mesogenic molecule and E , / E ,  was given the value 
of 1/5 found for the linear array of four Lennard-Jones centres [5 ] .  It was discovered 
that at a scaled density p* (=No:/?') of 0.32 and for scaled temperatures T* 
(= ~ T / E , )  less than 1.7 the system exhibits a nematic phase with long range orien- 
tational order and just short range translational order. In this simulation we had not 
attempted to locate other liquid crystal phases such as a smectic A which has a layer 
structure with short range translational order within the layers [7]. However, in 
computer simulations of hard spherocylinders with a length-to-breadth ratio of 6 : 1 
Frenkel has discovered that this system can exist, not only as a nematic phase, but also 
as a smectic A phase at a higher density [8]. In contrast it has been argued by Frenkel 
that i t  is most unlikely that a smectic phase could be formed by hard ellipsoids [9]. It 
is important therefore in judging the likely phase behaviour of a set of particles 
interacting via the Gay-Berne or indeed any potential model to know their shape. 
This may be defined in a variety of ways and for our purposes here we take the shape 
to given by the contour corresponding to the change of the potential energy from 
positive to negative. Since we wish to visualize this contour in two dimensions we must 
also constrain the molecular orientations and we take the particles to be parallel so 
that the remaining variable is their orientation to the intermolecular vector. This 
contour is obtained directly from a(ir,, ir,, P) given by equation (2) and is shown in 
figure 1 together with several other contours for different values of the attractive 
potential energy. These were calculated with the choice of parameters used in the 
computer simulation experiments and described in the following section. We see from 
such contours that the shape of the particles interacting via the Gay-Berne inter- 
molecular potential is ellipsoidal and certainly not spherocylindrical. In consequence 
we might be led to expect that the search for a smectic phase formed by such particles 
would be fruitless. However the strong side-by-side interactions (E ,  > E , )  for this 
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Figure 1. Potential energy contours calculated for parallel molecules interacting via the 
Gay-Berne potential as a function of their separation and their orientation with respect 
to the intermolecular vector. The parameterisation of the potential is that used in the 
molecular dynamics simulation and described in the text. 

potential model should stabilize the smectic phase even though the shape of the 
particle is ellipsoidal. This turns out to  be the case and here we describe the results 
of our simulation experiments. 

2. Molecular dynamics simulation 
The parameterization of the well depth function €(a,, Q,, P) used in the simulation 

differed slightly from that employed previously. Thus the exponents v = 2 and p = 1 
were used rather than v = 1 and p = 2; this does not influence the relative well 
depths for the side-by-side or end-to-end configurations. However with the new 
parameterization the side-by-side configuration is relatively more stable with respect 
to the cross and tee configurations. Since these configurations are not compatible with 
the molecular organization within a liquid crystal phase we expect this new param- 
eterization of the Gay-Berne potential to have a greater propensity for mesophase 
formation. The variation of the scaled potential energy U(Q,, Q2, ?)I&,, as a function 
of the scaled molecular separation, r/ao, for these particular configurations calculated 
for the two choices of exponents are shown in figure 2. 

The system studied contained 256 particles with the usual cubic periodic boundary 
conditions, nearest image summation and a cut-off of 3 .8 i0 .  The ratios UJO, and E , / E ,  

were assigned the values used in the previous simulation [6] .  Similarly, the scaled 
component of the inertia tensor perpendicular to the molecular symmetry axis 
(Zf = I , / r n ~ ; )  was assigned the value of 4. This was chosen to ensure that the 
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Mesophases of the Gay-Berne model mesogen 455 

Figure 2. The distance dependence of the energy calculated from the Gay-Berne potential for 
particular orientations of the molecules with respect to each other and to the inter- 
molecular vector. The exponents were assigned (a) their original values, v = 1 p = 2, 
and (b)  the values v = 2, p = I employed in this investigation. The ratios of the other 
parameters, oe/os and E , / E , ,  were given the values used in the computer simulation. 

optimum time steps for both the orientational and translational coordinates were 
approximately the same. We note, however, that this value is not consistent with that 
for an ellipsoid of revolution of length 30, and breadth o,, with the mass uniformly 
distributed in it. For this ellipsoid If is just 1/2; however the difference in If is 
unimportant here because we are only concerned with the structural properties of the 
phases exhibited by the Gay-Berne mesogen. The symmetry of the potential allows 
us to decouple the motion about the long axis from the simulation. The equations of 
motion were integrated using a Verlet algorithm in a method identical to that 
described by Pollock and Alder [lo]. The equations of motion together with the forces 
and torques obtained from the Gay-Berne potential are listed in the Appendix. In the 
simulation the scaled density was set equal to 0.30, which is slightly lower than that 
(p*  = 0.32) employed in the earlier investigation, in an attempt to facilitate the 
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456 G. R. Luckhurst et al. 

equilibration of the system. The calculations were performed on an IBM 3090-1 50 VF 
where each time step required about 1 s of C.P.U. time for its calculation. In the 
simulations the scaled time step At*, where t* is (c&mr:)’’’t was set equal to 0.005; 
the scaled times for the equilibration and production stages were typically between 25 
and 50. 

The first simulation was performed at a high scaled temperature of 3.0 taking 
a disordered configuration from a previous simulation as the starting point. The 
equilibrium second rank orientational order parameter, p, ,  was evaluated from the 
diagonalized Q tensor [Il l  and found to be approximately 0.09. For such a small 
number of particles this value indicates that the phase is isotropic; the value is not zero 
because of the statistical error in evaluating Q [12] and the influence of short range 
angular correlations in a small system. The scaled temperature was then lowered to 
approximately 2.0, 1.5, 1.0 and 0.5 with the initial configurations for the simulation 
being taken from the production stage of the preceding temperature. The actual scaled 
temperatures for the simulations were 3-00,2.19, 1.49, 1.00 and 0.50. The orientational 
order parameter was observed to increase with decreasing temperature and to take the 
values 0.41 (T* = 2-19), 0.81 (T* = 1.49), 0.91 (T* = 1.00) and 0.98 (T* = 0.50). 

The nature of the phases at  these temperatures can be characterized with a range 
of singlet and pair distribution functions. Thus the orientational order is reflected by 
the singlet orientational distribution of the molecules with respect to the director. 
Similarly translational ordering within the smectic phases is contained in the singlet 
translational distribution function of the molecules along the director. The nature 
of the molecular organization within a smectic layer could then be determined from 
the two dimensional radial distribution function together with the bond orientational 
correlation function. An alternative approach is simply to visualize the arrangement 
of the particles in a particular configuration taken from the production stage of the 
simulation. We have adopted the latter approach using an IBM WINGS vector 
graphics software package. This allows us to manipulate the image in real time and 
so to examine different features of the molecular organization in the configuration. 

3. The mesophases and their identification 
Images, photographed from the screen of an IBM5080 are shown in figure 

3 for the simulations at  scaled temperatures of approximately 3.00, 2.19, 1.49, 1.00 
and 0.50. In the images the molecules are drawn as lines whose length is somewhat 
shorter than required to be in correct proportion to the size of the simulation box; this 
enables the molelcular organization to be discerned more easily. In addition the 
director is also represented in the figures as a thick vertical line through the centre of 
the box. The orientation of this line with respect to the box was obtained from the Q 
tensor for the single configuration shown. The length of the director is proportional 
to the order parameter p2 equated with the largest eigenvalue of Q, again for the single 
configuration. Perfect orientational order (P ,  = 1) corresponds to the director length 
equal to that of the side of the cube. The configuration at the highest scaled tem- 
perature has a low order as is evident from the essentially random arrangement of the 
molecular orientations (see figure 3 (a)). The distribution of the centres of mass is also 
observably random thus confirming this as the isotropic phase. 

At the next lower temperature (T* = 2.19, see figure 2(b)) the molecules are 
clearly orientationally ordered with respect to the director whose length has increased 
appreciably. The molecular centres of mass are still quite random, in accord with the 
identification of this as a nematic phase. 
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Mesophases of the Gay-Berne model mesogen 457 

The orientational order increases significantly on lowering the scaled temperature 
to 1.49, as is apparent from the configuration shown in figure 3 ( c ) .  The molecular 
organization with respect to the director is more highly ordered as is evidenced by the 
dramatic growth in the length of the line representing the director. Of greater import- 
ance; however, is the clear appearance of a layer structure, orthogonal to the director, 
albeit with rather weak translational order. We shall return to the nature of this 
smectic phase presently. 

(e)  
Figure 3. Configurations taken from the production runs of the simulations at  scaled tem- 

peratures of (a) 3.00, (b)  2.19, (c )  1.49, ( d )  1.00 and (e)  0.50. In these figures the molecules 
are shown as lines and the director for the configuration is indicated by the thick vertical 
line whose length is proportional to the second rank orientational order parameter p2 for 
the configuration. 

At a still lower temperature (T* = 1.00) the orientational order has again grown, 
as we can see from the molecular distribution with respect to the director; indeed this 
order is almost complete (see figure 3 ( d ) ) .  Far more obvious is the considerable 
enhancement of the translational order; the layers are now manifestly apparent. The 
nature of this smectic phase may simply be a more ordered version of that found at 
the previous higher temperature or it may be another smectic polymorph. We shall 
decide this question shortly. 

For the sake of completeness a configuration taken from the production run at a 
scaled temperature of 0.50 is shown in figure 3 (e ) .  The essentially perfect order of both 
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orientational and translational coordinates is very clear. The long range translational 
ordering occurs in all three dimensions; this can be inferred from the ability to 
superimpose the molecules within the layers when looking a t  right angles to the 
director. The molecular organization within the layers will be considered presently. 
However the high order of this phase suggests that it is a crystal, a view supported by 
the vibrational and librational motion of the molecules on lattice sites which contrast 
with the directly observed diffusional motion of the molecules for the other phases. 

We turn now to the molecular organization within the layers and hence an 
identification of the two smectic phases. To visualize the molecules within a layer we 
construct a slice with thickness equal to the molecular length a, through the cube and 
orthogonal to the director. This slice is centred on one of the smectic layers, chosen 
to be near the middle of the simulation box; the layer was located by calculating the 
singlet translational distribution function along the director for that particular con- 
figuration and selecting an appropriate maximum. Those molecules with their cefitres 
of mass within the slice are represented as small spheres corresponding to their 
centres. The image so obtained for the high temperature smectic phase is shown in 
figure 4 (i), (a) where the two thick lines at the side of the box indicate the slightly 
reduced thickness of the slice. The molecular centres of mass are clearly grouped in 
a layer within the slice but with a reasonable thickness corresponding to weak 
translational order. For the nematic and isotropic phases the centres of mass are 
found to be uniformly distributed within the slice. To see the distribution of the 
molecules within a layer the image was rotated until the director was orthogonal to 
the IBM 5080 screen. The result is given in figure 4 (ii), (a) where the centres of mass 
are found to be distributed randomly within the layer. The high temperature smectic 
phase can therefore be safely identified as a smectic A [7]. We note that the slice 
through the simulation box results in some apparent vacancies in the smectic layer. 
These we attribute both to distortions of the layer and to the penetration of some 
molecules from one layer into the next. 

We have obtained corresponding images for the configuration of the low tem- 
perature smectic phase, with the results given in figure 4 (b). The thinner layer of the 
molecular centres shown in figure 4 (i), (b) corresponds to the higher translational 
order of the smectic phase. The nature of this smectic phase is revealed in figure 
4 (ii), (b) where the distribution of the centres of mass within the smectic plane is seen 
to be hexagonal, although this order is not complete. With these limited results and 
for such a small system it is very difficult to decide on the precise character of the 
translational order and bond orientational order within the smectic plane. However 
the tendency of the centres of mass to form a hexagonal arrangement suggests that 
the mesophase is a smectic B. It is almost impossible to judge whether this should be 
classified as a hexatic smectic B or a crystal B phase. The image in figure 3 (d) suggests 
that there is some correlation between the positions of particles in different layers but 
this is not perfect. Whether the correlation extends over many layers as in a crystal 
B phase [7] or whether it it just short ranged as in a hexatic smectic B phase cannot 
be discerned without being able to study a larger sample with many more layers. 

Again, for the sake of completeness, we show the analogous images in figure 4 (c) 
for the lowest temperature phase (T* = 0.50) which we had identified as a crystal. 
The high translational order, along the orientation of the molecular symmetry axes, 
is demonstrated by the very narrow distribution of molecular centres within the slice 
through the simulation box (see figure 4(i), (c)) .  The arrangement of the centres 
of mass within this plane is given in figure 4(ii),(c) and now an essentially long 
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0 .  * .  * * .  . . 

0 .  

p-0 . .  
* .  . 8 . .  . . .  .. . .  

. * .  . *  

Figure 4. The molecular organization of the centre of masses within a slice of the phase 
orthogonal to the director, through the centre of a smectic layer and u, thick at  scaled 
temperatures of (a) 1.49, (b) 1.00 and (c) 0.50. The images show (i) the distribution across 
the layer and (ii) that within the layer. The approximate thickness of the slice is indicated 
by the two lines a t  the side of the box. 

range hexagonal organization is clearly apparent. These images, together with that in 
figure 3 (e ) ,  support our identification of this phase as a crystal. 

It might have been expected that the simulation box could impose some restric- 
tions on the periodicity of the layer structure characteristic of a smectic phase. 
Certainly for a system with the director fixed parallel to one side of the box this is 
clearly the case. Then the density wave of the smectic phase must fit exactly into the 
box if its layered structured is to be commensurate with its own periodic images. This 
requires that 

Nd = L, (8) 

where d is the layer spacing, L is the length of the cubic simulation box and N is an 
integer. In our simulations d is of the order of 30, while the box length is about 90,; 
thus the ratio L/d is quite small and so its relative deviation from an integer value 
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could be important. If L / d  does deviate from an integer value then the layers in the 
box will be incommensurate with those in the periodic images and the energy associated 
with the disclinations so generated could be sufficient to change the layer spacing such 
that the ratio L / d  became integer. However in the simulation the constraint on L / d  
may not be quite so restrictive as implied by equation (8) because the director need 
not remain parallel to the edge of the simulation box. For an arbitrary orientation of 
the director, a, the requirement for the continuity of the smectic layers in the 
simulation box with those of its periodic images requires 

N,ri,d = L, (9) 

where N,, is an integer and a denotes x,  y and z.  Since A is a unit vector we see that 
the constraint placed oc d takes the form 

d = L/(N,Z + N,’ + NIZ)”2, (10) 

which is somewhat easier to satisfy than equation (8). For example, there the ratio L/d  
must be say either 3 or 4 whereas a range of values of L / d  between 3 and 4 can be 
obtained from the constraint imposed by equation (10). We expect, therefore, that the 
director for the smectic phases will adopt an orientation within the simulation box 
such that equation (10) is, to a good approximation, satisfied. This certainly seems to 
be the case for the system which we have studied. We should also note that equation 
(10) is identical to that for the spacing between adjacent layers with Miller indices N,, 
N,, N, for a cubic lattice with periodicity L.  For such a system the layers within the 
unit cell of the lattice (i.e. the simulation box) are clearly commensurate with those 
in all other unit cells (i.e. the periodic images). 

Analogous conditions obtain within the layers of the more ordered smectic phases 
and in the crystal. However there are no ways in which the system can satisfy these 
once the director orientation has been determined by the periodicity of the smectic 
layers. Fortunately the periodicity, a, within a layer is relatively small so that the ratio 
(L/a)* will be large, which means that the deviations from an integer value will be 
proportionally smaller. None the less for such high ordered systems it would be of 
particular interest to perform the simulation at constant pressure rather than constant 
volume. This would allow the box shape to be changed thus revealing the true 
structure unperturbed by the influence of the periodic boundary conditions [ 131. 

4. Conclusion 
A system of particles interacting via the Gay-Berne potential with a particular 

choice of parameters (a,/a, = 3, EJE, = 1/5, v = 2, p = 1) has been investigated by 
the molecular dynamics simulation technique. The system is found to exhibit a series 
of phases as the temperature is lowered. These phases have been identified by using 
computer graphics to visualize configurations taken from the production stage of 
the sirnulation. It would seem that the system possesses an isotropic, a nematic, a 
smectic A, a smectic B (hexatic or crystal) and a crystal phase. This rich poly- 
morphism of the Gay-Berne model mesogen makes it an ideal system with which to 
enhance our understanding of the static and dynamic behaviour of real liquid crystals. 

We are grateful to the Science and Engineering Research Council for the award 
of a research studentship to Mr. R. A. Stephens and for a grant towards the cost of 
the IBM graphics system. 
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Appendix 
Here, for the benefit of those readers unfamiliar with the molecular dynamics 

simulation technique, we provide a brief description of the methodology used in this 
paper. We also give the somewhat cumbersome expressions for the forces and torques 
for the Gay-Berne potential since these will be of value for those wishing to use this 
valuable model for liquid crystals in other simulation studies. 

The equations of motion for a particle can be separated into those concerned with 
translation and those dealing with rotation. The equation for the motion of the centre 
of mass is 

here m is the total mass of the particle, F is the total force acting on it  and i: is the 
acceleration of the particle caused by the force. For a molecule composed of several 
sites i the total mass is simply 

m = E m , ,  
I 

where m, is the mass associated with site i. The total force is then just the sum of the 
forces, F,, acting on each site 

F = 2 F,. (A 3) 
I 

The force on site i is the sum of those forces resulting from its interaction with all other 
particles in the simulation box and its periodic images. For an interaction between two 
sites via the potential U the force on site i at (x, y , z , )  is 

The rotational analogues of these equations are 

I h  = t, (A 5 )  

where I is the moment of inertia tensor, T is the torque acting on the particle and ci, 
is the resultant angular acceleration. For a particle containing several sites 

I = C m,(r, - r)(r ,  - r ) ,  
I 

where r denotes the centre-of-mass coordinates. The torque t acting on the particle 
is defined in terms of the forces acting on each site by 

t = ( r ,  - r) x F,. (A 7) 

The Gay-Berne potential is, however, a single site potential, indeed this is one of 
its virtues. The particle does, of course, experience a torque because of the angular 
dependence of the potential. This torque is equivalent to a force acting on a point 
separated by a unit distance from the centre-of-mass and acting in a direction 
orthogonal to the molecular symmetry axis. This equivalent force can be defined in 
terms of the derivative of the potential with respect to the coordinates of this point 
where the centre-of-mass is taken as the origin. These coordinates are just the 
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components of the unit vector Q, describing the molecular orientation and so the 
equivalent force is 

and the torque is then 

t = 0, x E. (A 9) 

The equations of motion for the centre-of-mass coordinates are solved using the 
Verlet algorithm [ 141 

r(t + d t )  = 2r(t) - r(t - st) + f(t)dt2. (A 10) 

The equations of motion for the molecular orientation can, in principle, be solved for 
the time evolution of the unit vector B in the same way, 

u(t + d t )  = 2 i ( t )  - Q ( f  - d t )  + i*r(t)dtZ, ( A l l )  

where the angular acceleration i*r ( t )  is 

G ( t )  = E/I. (A 12) 

For sufficiently small time steps the vector u at time t + d t  would be a unit vector 
but, in general, there is no constraint on u(t + d t )  to have unit length and so the hat 
has been removed from this in equation (A 11). To prevent u(t + st) from deviating 
from its desired unit length a corrective force is, in effect, applied parallel to the 
molecular symmetry axis, at time t .  The magnitude, 1, of this force 

f(t) = 1Q(t) (A 13) 

is chosen to retain Q(t + d t )  as a unit vector. I t  has no other effect on the dynamics 
of the system. The value of 1(t) necessary to achieve this is found in the following way. 
The force applied is such that at  the end of the time step u(t + dt) is a unit vector, 
that is 

a’(t + d t )  = U ( t  + dt) + a(t)(A/2m)st2, (A 14) 
where 61 is an arbitrary mass on which f(t) acts. However the value of 6I can be 
subsumed into A by writing equation (A 14) as 

Q ’ ( t  + d t )  = U ( t  + dt) + Q(t)1’. (A 15) 

Now taking the scalar product of each side of this equation with itself gives a 
quadratic for A’ whose solution is 

1’ = - G ( r )  - u(r + dt) & {[a@) - U ( t  + dt)]2 - [u(t + dt) * u(t + dt)] + l}”’. 

(A 16) 
The positive sign is taken since this will always give the smallest value for 1’ and so 
ensure that the correction terms are minimized. These terms Q(t)A’  are then added to 
the vector u(t + dt) which restores the molecular orientation at  time t + dt to being 
a unit vector. 
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Mesophases of the Gay-Berne model mesogen 463 

We turn now to the gradients of the Gay-Berne potential needed in the integrated 
equations of motion. To simplify the notation equation ( I )  for the potential is written 
in terms of the scaled variable 

R = [r - u(Ql,Q2,P) + c-JoO. (A 17) 

The function, depending on the relative orientation of the molecules and the inter- 
molecular vector, which enters the expressions for both the well depth and the 
distance of closest approach is written as 

}.  (A18) 
x (P * a, + P * Q2)2  (P * Q, - P * a,), 

1 - X(Q, - 0 2 )  
+ 

2 i 1 + x(a, - a,) g ( X )  = I - - 

Here X denotes either the shape anisotropy parameter x or the well-depth anisotropy 
parameter x ’ ;  that is 

g(x) -”2  = 44 9 Q,, P)loo (A 19) 

g(x’) = &’(dl 9 Q,, 0. (A 20) 

and 

As the translational coordinate of one molecule is changed so the components of the 
intermolecular vector are also altered. To make this dependence of a(O,, Q,, P) and 
&’(a,, Q,, P) on the intermolecular separation explicit we write g ( X )  in terms of the 
intermolecular vector r and the separation r ,  

( r .  ir, + r -  Q,)’ 
I + X(Q, - a,) 

( r . 6 ,  - r -ij,), 
1 - X(Q, - a,) + g ( X )  = 1 - - 

Using this notation the gradient of the Gay-Berne potential with respect to, say, the 
x coordinate of one particle is 

+ (R-I2  - R-6)pgg”-I( , f )  - 

where 
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464 G. R. Luckhurst et af. 

There are analogous expressions for the y and z derivatives which then give the force 
F acting on a particle (see equation (A 4)). 

The torque is obtained in a similar manner; we give the gradient of the potential 
with respect to the x component of the unit vector ii, . This is 

where 

The derivatives occurring in these equations are given by 

where 

I x 2(P * a, + P a,) 2(P - a, - P * a,) 
- - - 

1 - X [ Q ,  * a,] + a g ( x )  - 
a 4 x  1 + XIQI * a,] 

}]. ('431) 
(P * a, - P - Q2)2 (P - a, + i - a,), 

1 + x[a, - a,], + { 1 - x[a, - u2]2 
+ xi, 

References 
[I] DEMUS, D., 1989, Liq. Crystals, 5, 75. 
[2] LEBWOHL, P. A., and LASHER, G., 1972, Phys. Rev. A, 6, 426; 1973, ibid., 7, 2222. 
[3] BERNE, B. J., and PECHUKAS, P., 1972, J. chem. Phys., 56, 4213. KUSHICK, J., and BERNE, 

B. J., 1976, J .  chem. Phys., 64, 1362. 
[4] STONE, A. J., 1979, The Molecular Physics of Liquid Crystals, edited by G .  R. Luckhurst 

and G. W. Gray (Academic Press), chap. 2. 
[5] GAY, J. G., and BERNE, B. J., 1981, J .  chem. Phys., 74, 3316. N.b. the notation introduced 

by Gay and Berne for the potential differs slightly from that which we use here. 
[6] ADAMS, D. J., LUCKHURST, G. R., and PHIPPEN, R. W., 1987, Molec. Phys., 61, 1575. This 

paper contains several typographical errors: in the simulation E, /E ,  was set equal to 1/5 
(and not 5); the parameters in the potential had been obtained [5] for four Lennard-Jones 
centres separated by 2a, (and not 3a0) and the temperatures labelling the second rank 
pair correlation functions in figure 1 should be. reversed. 

[7] See, for example, L E A D B E ~ E R ,  A. J., 1987, Thermotropic Liquid Crystals, edited by G. W. 
Gray (Wiley). 

[8] FRENKEL, D., 1988, J .  phys. Chem., 92, 3280. 
[9] FRENKEL, D., 1989, Liq. Crystals, 5 ,  929. 

[lo] POLLOCK, E. L., and ALDER, B. J., 1980, Physica A, 102, 1. 
[ I  I] VIEILLARD-BARON, J., 1974, Molec. Phys., 28, 809. 
[I21 EPPENGA, R., and FRENKEL, D., 1984, Molec. Phys., 52, 1303. 
[I31 PARRINELLO, M., and RAHMAN, A., 1981, J. uppl. Phys., 52, 7182. 
[14] VERLET, L., 1967, Phys. Rev., 159, 98. 

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
1
3
:
4
8
 
2
6
 
J
a
n
u
a
r
y
 
2
0
1
1


